Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.839
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542169

RESUMO

LESION-SIMULATING DISEASE1 (LSD1) is one of the well-known cell death regulatory proteins in Arabidopsis thaliana. The lsd1 mutant exhibits runaway cell death (RCD) in response to various biotic and abiotic stresses. The phenotype of the lsd1 mutant strongly depends on two other proteins, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN-DEFICIENT 4 (PAD4) as well as on the synthesis/metabolism/signaling of salicylic acid (SA) and reactive oxygen species (ROS). However, the most interesting aspect of the lsd1 mutant is its conditional-dependent RCD phenotype, and thus, the defined role and function of LSD1 in the suppression of EDS1 and PAD4 in controlled laboratory conditions is different in comparison to a multivariable field environment. Analysis of the lsd1 mutant transcriptome in ambient laboratory and field conditions indicated that there were some candidate genes and proteins that might be involved in the regulation of the lsd1 conditional-dependent RCD phenotype. One of them is METACASPASE 8 (AT1G16420). This type II metacaspase was described as a cell death-positive regulator induced by UV-C irradiation and ROS accumulation. In the double mc8/lsd1 mutant, we discovered reversion of the lsd1 RCD phenotype in response to UV radiation applied in controlled laboratory conditions. This cell death deregulation observed in the lsd1 mutant was reverted like in double mutants of lsd1/eds1 and lsd1/pad4. To summarize, in this work, we demonstrated that MC8 is positively involved in EDS1 and PAD4 conditional-dependent regulation of cell death when LSD1 function is suppressed in Arabidopsis thaliana. Thus, we identified a new protein compound of the conditional LSD1-EDS1-PAD4 regulatory hub. We proposed a working model of MC8 involvement in the regulation of cell death and we postulated that MC8 is a crucial protein in this regulatory pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Morte Celular/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo
2.
Biochem Pharmacol ; 223: 116128, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492781

RESUMO

Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.


Assuntos
Carboxilesterase , Hidrolases de Éster Carboxílico , Humanos , Animais , Camundongos , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Microssomos Hepáticos/metabolismo , Fígado/metabolismo , Hidrólise , Triglicerídeos/metabolismo
3.
Food Chem ; 446: 138806, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402767

RESUMO

High pressure processing (HPP) juice often experiences cloud loss during storage, caused by the activity of pectin methylesterase (PME). The combination of HPP with natural pectin methylesterase inhibitor (PMEI) could improve juice stability. However, extracting natural PMEI is challenging. Gene recombination technology offers a solution by efficiently expressing recombinant PMEI from Escherichia coli and Pichia pastoris. Experimental and molecular dynamics simulation were conducted to investigate changes in activity, structure, and interaction of PME and recombinant PMEI during HPP. The results showed PME retained high residual activity, while PMEI demonstrated superior pressure resistance. Under HPP, PMEI's structure remained stable, while the N-terminus of PME's α-helix became unstable. Additionally, the helix at the junction with the PME/PMEI complex changed, thereby affecting its binding. Furthermore, PMEI competed with pectin for active sites on PME, elucidating. The potential mechanism of PME inactivation through the synergistic effects of HPP and PMEI.


Assuntos
Hidrolases de Éster Carboxílico , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico , Alimentos
4.
J Pharmacol Exp Ther ; 388(3): 798-812, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253384

RESUMO

The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a central regulator of innate immunity, essential for processing and release of interleukin-1ß and pyroptotic cell death. As endogenous NLRP3 activating triggers are hallmarks of many human chronic inflammatory diseases, inhibition of NLRP3 has emerged as a therapeutic target. Here we identify NDT-19795 as a novel carboxylic acid-containing NLRP3 activation inhibitor in both human and mouse monocytes and macrophages. Remarkably, conversion of the carboxylate to an isopropyl-ester (NT-0796) greatly enhances NLRP3 inhibitory potency in human monocytes. This increase is attributed to the ester-containing pharmacophore being more cell-penetrant than the acid species and, once internalized, the ester being metabolized to NDT-19795 by carboxylesterase-1 (CES-1). Mouse macrophages do not express CES-1, and NT-0796 is ineffective in these cells. Mice also contain plasma esterase (Ces1c) activity which is absent in humans. To create a more human-like model, we generated a mouse line in which the genome was modified, removing Ces1c and replacing this segment of DNA with the human CES-1 gene driven by a mononuclear phagocyte-specific promoter. We show human CES-1 presence in monocytes/macrophages increases the ability of NT-0796 to inhibit NLRP3 activation both in vitro and in vivo. As NLRP3 is widely expressed by monocytes/macrophages, the co-existence of CES-1 in these same cells affords a unique opportunity to direct ester-containing NLRP3 inhibitors precisely to target cells of interest. Profiling NT-0796 in mice humanized with respect to CES-1 biology enables critical modeling of the pharmacokinetics and pharmacodynamics of this novel therapeutic candidate. SIGNIFICANCE STATEMENT: Inhibition of NLRP3 represents a desirable therapeutic strategy for the treatment of multiple human disorders. In this study pharmacological properties of a structurally-novel, ester-containing NLRP3 inhibitor NT-0796 are characterized. To study pharmacodynamics of NT-0796 in vivo, a mouse line was engineered possessing more human-like traits with respect to carboxylesterase biology. In the context of these hCES-1 mice, NT-0796 serves as a more effective inhibitor of NLRP3 activation than the corresponding acid, highlighting the full translational potential of the ester strategy.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Domínio Pirina , Inflamassomos/metabolismo , Caspase 1/metabolismo , Ésteres , Hidrolases de Éster Carboxílico/metabolismo , Interleucina-1beta/metabolismo
5.
Analyst ; 149(2): 418-425, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078792

RESUMO

Carboxylesterase (CES), a main hydrolysis enzyme family in the human body, plays a crucial role in drug metabolism. Among them, CES1 and CES2 are the primary subtypes, and each exhibits distinct distribution and functions. However, convenient and non-invasive methods for distinguishing them and the real-time monitoring of CES2 are relatively rare, hindering the further understanding of physiological functions and underlying mechanisms. In this study, we have designed, synthesized, and evaluated the first selective bioluminescent probe (CBP 1) for CES2 with high sensitivity, high specificity and rapid reactivity. This probe offers a promising approach for the real-time detection of CES2 and its dynamic fluctuations both in vitro and in vivo.


Assuntos
Hidrolases de Éster Carboxílico , Humanos , Hidrolases de Éster Carboxílico/metabolismo
6.
J Exp Bot ; 75(1): 364-390, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712879

RESUMO

The mechanisms underlying susceptibility to and defense against Pseudomonas syringae (Pph) of the common bean (Phaseolus vulgaris) have not yet been clarified. To investigate these, 15-day-old plants of the variety Riñón were infected with Pph and the transcriptomic changes at 2 h and 9 h post-infection were analysed. RNA-seq analysis showed an up-regulation of genes involved in defense/signaling at 2 h, most of them being down-regulated at 9 h, suggesting that Pph inhibits the transcriptomic reprogramming of the plant. This trend was also observed in the modulation of 101 cell wall-related genes. Cell wall composition changes at early stages of Pph infection were associated with homogalacturonan methylation and the formation of egg boxes. Among the cell wall genes modulated, a pectin methylesterase inhibitor 3 (PvPMEI3) gene, closely related to AtPMEI3, was detected. PvPMEI3 protein was located in the apoplast and its pectin methylesterase inhibitory activity was demonstrated. PvPMEI3 seems to be a good candidate to play a key role in Pph infection, which was supported by analysis of an Arabidopsis pmei3 mutant, which showed susceptibility to Pph, in contrast to resistant Arabidopsis Col-0 plants. These results indicate a key role of the degree of pectin methylesterification in host resistance to Pph during the first steps of the attack.


Assuntos
Arabidopsis , Phaseolus , Arabidopsis/genética , Arabidopsis/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Pseudomonas syringae/fisiologia , Pectinas/metabolismo , Parede Celular/metabolismo
7.
Xenobiotica ; 54(1): 10-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142303

RESUMO

1. Carboxylesterase (CES) has been studied extensively, mostly with substrates in the monoester structures. We investigated the relationship between indomethacin diester prodrugs and metabolic activation by microsomes and recombinant human CES.2. Eight indomethacin diester prodrugs were synthesised in two steps. They were used as substrates and hydrolysis rates were calculated.3. As a result, the major hydrolysis enzyme was CES. The hydrolysis rate of recombinant CES2A1 was comparable to that of recombinant CES1A1.4. In this study, by changing the structure of the prodrug to a diester structure, it was found that CES2 activity was equivalent to CES1 activity.5. It should be noted that the use of diester prodrugs in prodrug discovery, where organ-specific hydrolysis reactions are expected, may not yield the expected results.


Assuntos
Hidrolases de Éster Carboxílico , Pró-Fármacos , Humanos , Hidrolases de Éster Carboxílico/metabolismo , Indometacina , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Carboxilesterase/metabolismo , Microssomos/metabolismo , Hidrólise
8.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067477

RESUMO

Neuropathy target esterase (NTE) is a serine hydrolase with phospholipase B activity, which is involved in maintaining the homeostasis of phospholipids. It can be inhibited by aging inhibitors such as some organophosphorus (OP) compounds, which leads to delayed neurotoxicity with distal degeneration of axons. However, the detailed binding conformation of aging and non-aging inhibitors with NTE is not known. In this study, new computational models were constructed by using MODELLER 10.3 and AlphaFold2 to further investigate the inhibition mechanism of aging and non-aging compounds using molecular docking. The results show that the non-aging compounds bind the hydrophobic pocket much deeper than aging compounds and form the hydrophobic interaction with Phe1066. Therefore, the unique binding conformation of non-aging compounds may prevent the aging reaction. These important differences of the binding conformations of aging and non-aging inhibitors with NTE may help explain their different inhibition mechanism and the protection of non-aging NTE inhibitors against delayed neuropathy.


Assuntos
Hidrolases de Éster Carboxílico , Compostos Organofosforados , Animais , Simulação de Acoplamento Molecular , Hidrolases de Éster Carboxílico/metabolismo , Compostos Organofosforados/química , Envelhecimento , Galinhas/metabolismo
9.
Nat Commun ; 14(1): 7505, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980401

RESUMO

Moth sex pheromones are a classical model for studying sexual selection. Females typically produce a species-specific pheromone blend that attracts males. Revealing the enzymes involved in the interspecific variation in blend composition is key for understanding the evolution of these sexual communication systems. The nature of the enzymes involved in the variation of acetate esters, which are prominent compounds in moth pheromone blends, remains unclear. We identify enzymes involved in acetate degradation using two closely related moth species: Heliothis (Chloridea) subflexa and H. (C.) virescens, which have different quantities of acetate esters in their sex pheromone. Through comparative transcriptomic analyses and CRISPR/Cas9 knockouts, we show that two lipases and two esterases from H. virescens reduce the levels of pheromone acetate esters when expressed in H. subflexa females. Together, our results show that lipases and carboxylesterases are involved in tuning Lepidoptera pheromones composition.


Assuntos
Mariposas , Atrativos Sexuais , Masculino , Animais , Feminino , Mariposas/genética , Mariposas/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Feromônios/metabolismo , Lipase/metabolismo , Acetatos/metabolismo
10.
J Environ Manage ; 347: 119193, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797518

RESUMO

From the surface of the earth to the depths of the ocean, microplastics are a hazard for both aquatic and terrestrial habitats. Due to their small size and vast expanse, they can further integrate into living things. The fate of microplastics in the environment depends upon the biotic components such as microorganisms which have potential enzymes to degrade the microplastics. As a result, scientists are interested in using microorganisms like bacteria, fungi, and others to remediate microplastic. These microorganisms release the cutinase enzyme, which is associated with the enzymatic breakdown of microplastics and plastic films. Yet, numerous varieties of microplastics exist in the environment and their contaminants act as a significant challenge in degrading microplastics. The review discusses the cutinases enzyme degradation strategies and potential answers to deal with existing and newly generated microplastic waste - polyethylene (PE), polyethylene terephthalate (PET), poly-ε-caprolactone (PCL), polyurethanes (PU), and polybutylene succinate (PBS), along with their degradation pathways. The potential of cutinase enzymes from various microorganisms can effectively act to remediate the global problem of microplastic pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Hidrolases de Éster Carboxílico/metabolismo , Polietilenotereftalatos
11.
World J Microbiol Biotechnol ; 39(12): 348, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855845

RESUMO

Over recent years, Alicyclobacillus acidocaldarius, a Gram-positive nonpathogenic rod-shaped thermo-acid-tolerant bacterium, has posed numerous challenges for the fruit juice industry. However, the bacterium's unique characteristics, particularly its nonpathogenic and thermophilic capabilities, offer significant opportunities for genetic exploration by biotechnologists. This study presents the computational proteogenomics report on the carboxylesterase (CE) enzyme in A. acidocaldarius, shedding light on structural and evolutional of CEs from this bacterium. Our analysis revealed that the average molecular weight of CEs in A. acidocaldarius was 41 kDa, with an isoelectric point around 5. The amino acid composition favored negative amino acids over positive ones. The aliphatic index and hydropathicity were approximately 88 and - 0.15, respectively. While the protein sequence showed no disulfide bonds in the CEs' structure, the presence of Cys amino acids was observed in the structure of CEs. Phylogenetic analysis presented more than 99% similarity between CEs, indicating their close evolutionary relationship. By applying homology modeling, the 3-dimensional structural models of the carboxylesterase were constructed, which with the help of structural conservation and solvent accessibility analysis highlighted key residues and regions responsible for enzyme stability and conformation. The specific patterns presented the total solvent accessibility of less than 25 (Å2) was in considerable position as well as Gly residues were noticeably have high accessibility to solvent in all structures. Ala was the more frequent amino acids in the conserved-SASA of carboxylesterases. Furthermore, unsupervised agglomerative hierarchical clustering based on solvent accessibility feature successfully clustered and even distinguished this enzyme from proteases from the same genome. These findings contribute to a deeper understanding of the nonpathogenic A. acidocaldarius carboxylesterase and its potential applications in biotechnology. Additionally, structural analysis of CEs would help to address potential solutions in fruit juice industry with utilization of computational structural biology.


Assuntos
Alicyclobacillus , Proteogenômica , Carboxilesterase/genética , Carboxilesterase/química , Carboxilesterase/metabolismo , Filogenia , Alicyclobacillus/genética , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Frutas/microbiologia , Aminoácidos/genética , Solventes
12.
Fungal Genet Biol ; 169: 103841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797717

RESUMO

Once deposited in the plant cell wall, pectin undergoes demethylesterification by endogenous pectin methylesterases (PMEs), which play various roles in growth and development, including defense against pathogen attacks. Pathogen PMEs can alter pectin's methylesterification pattern, increasing its susceptibility to degradation by other fungal pectinases and thus playing a critical role as virulence factors during early infection stages. To investigate the evolutionary history of PMEs in the Dothideomycetes class of fungi, we obtained genomic data from 15 orders (79 species) and added genomic data from 61 isolates of Corynespora cassiicola. Our analyses involved maximum likelihood phylogenies, gene genealogies, and selection analyses. Additionally, we measured PME gene expression levels of C. cassiicola using soybean as a host through RT-qPCR assays. We recovered 145 putative effector PMEs and 57 putative non-effector PMEs from across the Dothideomycetes. The PME gene family exhibits a small size (up to 5 members per genome) and comprises three major clades. The evolutionary patterns of the PME1 and PME2 clades were largely shaped by duplications and recurring gene retention events, while biased gene loss characterized the small-sized PME3 clade. The presence of five members in the PME gene family of C. cassiicola suggests that the family may play a key role in the evolutionary success of C. cassiicola as a polyphagous plant pathogen. The haplogroups Cc_PME1.1 and Cc_PME1.2 exhibited an accelerated rate of evolution, whereas Cc_PME2.1, Cc_PME2.2, and Cc_PME2.3 seem to be under strong purifying selective constraints. All five PME genes were expressed during infection of soybean leaves, with the highest levels during from six to eight days post-inoculation. The highest relative expression level was measured for CC_29_g7533, a member of the Cc_PME2.3 clade, while the remaining four genes had relatively lower levels of expression.


Assuntos
Hidrolases de Éster Carboxílico , Fungos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Fungos/metabolismo , Pectinas/metabolismo
13.
Sci Rep ; 13(1): 16755, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798429

RESUMO

Bioconversion using fungi, as natural factory of many applicable bioactive compounds, as enzymes utilizing agro-residue substrates as a solid, abundant, low-cost growth and enzyme production media. This study characterized and applied a tannase enzyme (308 U/mg) from Aspergillus niger A8 + Trichoderma viride co-cultures utilizing pomegranate peels. The partially purified enzyme showed maximal relative activity at 37-65 °C for 10 min and kinetics of thermal inactivation energy at a high point at 60 °C for 0.040/min. The half-life was 37 °C for 58.6 min, temperature coefficient Q10 of tannase was maximal for 1.38 between 40 and 50 °C, and the activation energy was 17.42 kJ/mol. The enzyme activity peaked in the pH range of 4-8, and the maximum relative activity (100.6%) for tannase was achieved at pH 6. The Km and Vmax values for purified enzymes using tannic acid were 7.3 mg/mL and 3333.33 U/mL, respectively. The enzyme reduced the total tannin content in all tannin-rich substrates after 12h. The gallic acid (GA) had total phenols of 77.75 ppm and antioxidant activity of 82.91%. It was observed that the GA as antimicrobial influencer exhibited the largest inhibitory zone diameter (IZD) of 31 ± 1.0 mm against Pseudomonas aeruginosa ATCC27853. The GA minimum inhibitory concentration value was ranged from 7770.0-121.41 µg/mL. The obtained GA showed a bactericidal effect against all bacterial strains except Shigella sonnei DSM5570 and Salmonella typhi DSM17058, which showed bacteriostatic behavior.


Assuntos
Aspergillus niger , Ácido Gálico , Fermentação , Hidrolases de Éster Carboxílico/metabolismo , Taninos/metabolismo , Concentração de Íons de Hidrogênio
14.
Protein J ; 42(6): 675-684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819423

RESUMO

Amino ester hydrolases (AEHs) are capable of rapid synthesis of cephalexin but suffer from rapid deactivation even at low temperatures. Previous efforts to engineer AEH have generated several improved variants but have been limited in scope in part due to limitations in activity assay throughput for ß-lactam synthesis reactions. Rational design of 'whole variants' was explored to rapidly improve AEH thermostability by mutating between 3-15% of residues. Most variants were found to be inactive due to a mutated calcium binding site, the function of which has not previously been described. Four active variants, all with improved melting temperatures, were characterized in terms of synthesis and hydrolysis activity, melting temperature, and deactivation at 25°C. Two variants were found to have improved total turnover numbers relative to the initial AEH variant; however, a clear tradeoff exists between improved stability and overall activity of each variant.


Assuntos
Hidrolases de Éster Carboxílico , beta-Lactamas , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Sítios de Ligação , Temperatura , Hidrólise , Estabilidade Enzimática
15.
J Exp Bot ; 74(21): 6860-6873, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37696760

RESUMO

MYZUS PERSICAE-INDUCED LIPASE1 (MPL1) encodes a lipase in Arabidopsis thaliana that is required for limiting infestation by the green peach aphid (GPA; Myzus persicae), an important phloem sap-consuming insect pest. Previously, we demonstrated that MPL1 expression was up-regulated in response to GPA infestation, and GPA fecundity was higher on the mpl1 mutant, compared with the wild-type (WT), and lower on 35S:MPL1 plants that constitutively expressed MPL1 from the 35S promoter. Here, we show that the MPL1 promoter is active in the phloem and expression of the MPL1 coding sequence from the phloem-specific SUC2 promoter in mpl1 is sufficient to restore resistance to GPA. The GPA infestation-associated up-regulation of MPL1 requires CYCLOPHILIN 20-3 (CYP20-3), which encodes a 12-oxo-phytodienoic acid (OPDA)-binding protein that is involved in OPDA signaling, and is required for limiting GPA infestation. OPDA promotes MPL1 expression to limit GPA fecundity, a process that requires CYP20-3 function. These results along with our observation that constitutive expression of MPL1 from the 35S promoter restores resistance to GPA in the cyp20-3 mutant, and MPL1 acts in a feedback loop to limit OPDA levels in GPA-infested plants, suggest that an interplay between MPL1, OPDA, and CYP20-3 contributes to resistance to GPA.


Assuntos
Afídeos , Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Lipase/genética , Lipase/metabolismo , Afídeos/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Mutação , Doenças das Plantas , Regulação da Expressão Gênica de Plantas
16.
Chem Biol Interact ; 383: 110657, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37573927

RESUMO

The problem of biofilm formation is a serious concern under various pathological conditions such as extensive burns, wounds in diabetic patients, bedsores, cystic fibrosis, nosocomial infections from implantable medical devices such as catheters, valves, etc. Environmental diffusion of biofilm (in pools, wet floors, industrial food plants) that could represent a reservoir of antibiotic resistant bacteria constitues an additional issue. In this work is described a lactonase from Rhodococcus erythropolis, a phosphotriesterase-like lactonase (PLL) enzyme, which has already been studied in the past and can be used for containment of biofilm formation. The protein is 28% and 40% identical with respect to the Pseudomonas diminuta PTE and the thermostable Saccharolobus solfataricus SsoPox respectively. The protein was obtained starting from a synthetic His-tagged gene, expressed in E. coli, purified and further characterized. New properties, not previously known or deducible from its sequence, have been highlighted. These properties are: the enzyme is thermophilic and thermostable even though it originates from a mesophilic bacterium; the enzyme has a long (months) shelf life at 4 °C; the enzyme is not only stable to low concentrations of the oxidant H2O2 but even activated by it at high concentrations; the enzyme proved to be a proficient quorum quenching enzyme, able to hydrolase acyl-homoserine lactones 3oxoC12-HSL and C4-HSL, and can inhibit up to 60% the formation of Pseudomonas aeruginosa (PAO1) biofilm. These different properties make the lactonase useful to fight resistant bacteria that induce inflammatory and infectious processes mediated by the quorum sensing mechanism.


Assuntos
Hidrolases de Triester Fosfórico , Percepção de Quorum , Humanos , Hidrolases de Triester Fosfórico/genética , Hidrolases de Triester Fosfórico/metabolismo , Escherichia coli/metabolismo , Peróxido de Hidrogênio , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Biofilmes , Bactérias/metabolismo , Estabilidade Enzimática
17.
Biomed Pharmacother ; 166: 115304, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586117

RESUMO

Adagrasib (Krazati™) is the second FDA-approved specific KRASG12C inhibitor for non-small cell lung cancer (NSCLC) patients harboring this mutation. The impact of the drug efflux transporters ABCB1 and ABCG2, and the drug-metabolizing enzymes CYP3A and carboxylesterase 1 (CES1) on the pharmacokinetics of oral adagrasib were studied using genetically modified mouse models. Adagrasib was potently transported by human ABCB1 and modestly by mouse Abcg2 in vitro. In Abcb1a/b-/- and Abcb1a/b;Abcg2-/- mice, the brain-to-plasma ratios were enhanced by 33- and 55-fold, respectively, compared to wild-type mice, whereas ratios in Abcg2-/- mice remained unchanged. The influence of ABC transporters was completely reversed by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, increasing the brain penetration in wild-type mice by 41-fold while no signs of acute CNS toxicity were observed. Tumor ABCB1 overexpression may thus confer adagrasib resistance. Whereas the ABC transporters did not affect adagrasib plasma exposure, CYP3A and Ces1 strongly impacted its apparent oral availability. The plasma AUC0-8 h was significantly enhanced by 2.3-fold in Cyp3a-/- compared to wild-type mice, and subsequently 4.3-fold reduced in transgenic CYP3A4 mice, indicating substantial CYP3A-mediated metabolism. Adagrasib plasma exposure was strongly reduced in Ces1-/- compared to wild-type mice, but tissue exposure was slightly increased, suggesting that adagrasib binds to plasma Ces1c in mice and is perhaps metabolized by Ces1. This binding could complicate interpretation of mouse studies, especially since humans lack circulating CES1 enzyme(s). Our results may be useful to further optimize the clinical safety and efficacy of adagrasib, and give more insight into potential drug-drug interactions risks.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Cães , Humanos , Camundongos , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Carboxilesterase/genética , Carboxilesterase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Madin Darby de Rim Canino , Camundongos Knockout , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
18.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569396

RESUMO

This study aimed to elucidate the crystal structure and biochemically characterize the carboxylesterase EaEst2, a thermotolerant biocatalyst derived from Exiguobacterium antarcticum, a psychrotrophic bacterium. Sequence and phylogenetic analyses showed that EaEst2 belongs to the Family XIII group of carboxylesterases. EaEst2 has a broad range of substrate specificities for short-chain p-nitrophenyl (pNP) esters, 1-naphthyl acetate (1-NA), and 1-naphthyl butyrate (1-NB). Its optimal pH is 7.0, losing its enzymatic activity at temperatures above 50 °C. EaEst2 showed degradation activity toward bis(2-hydroxyethyl) terephthalate (BHET), a polyethylene terephthalate degradation intermediate. We determined the crystal structure of EaEst2 at a 1.74 Å resolution in the ligand-free form to investigate BHET degradation at a molecular level. Finally, the biochemical stability and immobilization of a crosslinked enzyme aggregate (CLEA) were assessed to examine its potential for industrial application. Overall, the structural and biochemical characterization of EaEst2 demonstrates its industrial potency as a biocatalyst.


Assuntos
Bacillaceae , Carboxilesterase , Carboxilesterase/genética , Filogenia , Bacillaceae/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Especificidade por Substrato
19.
BMC Plant Biol ; 23(1): 370, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37491206

RESUMO

BACKGROUND: Extensive population growth and climate change accelerate the search for alternative ways of plant-based biomass, biofuel and feed production. Here, we focus on hitherto unknow, new promising cold-stimulated function of phospholipid:diacylglycerol acyltransferase1 (PDAT1) - an enzyme catalyzing the last step of triacylglycerol (TAG) biosynthesis. RESULT: Overexpression of AtPDAT1 boosted seed yield by 160% in Arabidopsis plants exposed to long-term cold compared to standard conditions. Such seeds increased both their weight and acyl-lipids content. This work also elucidates PDAT1's role in leaves, which was previously unclear. Aerial parts of AtPDAT1-overexpressing plants were characterized by accelerated growth at early and vegetative stages of development and by biomass weighing three times more than control. Overexpression of PDAT1 increased the expression of SUGAR-DEPENDENT1 (SDP1) TAG lipase and enhanced lipid remodeling, driving lipid turnover and influencing biomass increment. This effect was especially pronounced in cold conditions, where the elevated synergistic expression of PDAT1 and SDP1 resulted in double biomass increase compared to standard conditions. Elevated phospholipid remodeling also enhanced autophagy flux in AtPDAT1-overexpresing lines subjected to cold, despite the overall diminished autophagy intensity in cold conditions. CONCLUSIONS: Our data suggest that PDAT1 promotes greater vitality in cold-exposed plants, stimulates their longevity and boosts oilseed oil production at low temperature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfolipídeos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Diglicerídeos/metabolismo , Triglicerídeos , Arabidopsis/metabolismo , Plantas/metabolismo , Sementes , Plantas Geneticamente Modificadas/metabolismo , Óleos de Plantas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo
20.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446348

RESUMO

Ferulic acid and related hydroxycinnamic acids, used as antioxidants and preservatives in the food, cosmetic, pharmaceutical and biotechnology industries, are among the most abundant phenolic compounds present in plant biomass. Identification of novel compounds that can produce ferulic acid and hydroxycinnamic acids, that are safe and can be mass-produced, is critical for the sustainability of these industries. In this study, we aimed to obtain and characterize a feruloyl esterase (LaFae) from Lactobacillus acidophilus. Our results demonstrated that LaFae reacts with ethyl ferulate and can be used to effectively produce ferulic acid from wheat bran, rice bran and corn stalks. In addition, xylanase supplementation was found to enhance LaFae enzymatic hydrolysis, thereby augmenting ferulic acid production. To further investigate the active site configuration of LaFae, crystal structures of unliganded and ethyl ferulate-bound LaFae were determined at 2.3 and 2.19 Å resolutions, respectively. Structural analysis shows that a Phe34 residue, located at the active site entrance, acts as a gatekeeper residue and controls substrate binding. Mutating this Phe34 to Ala produced an approximately 1.6-fold increase in LaFae activity against p-nitrophenyl butyrate. Our results highlight the considerable application potential of LaFae to produce ferulic acid from plant biomass and agricultural by-products.


Assuntos
Ácidos Cumáricos , Lactobacillus acidophilus , Ácidos Cumáricos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...